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Abstract 

Soil organic carbon (SOC) is a broad sustainability indicator for assessing soil quality and contribution for 

mitigation and adaptation to climate change (CC). This dissertation focuses on understanding how CC, land 

use and management practices affect SOC. 

Croplands were analyzed using two CC scenarios for 63 crop types in 17,203 unique homogenous territorial 

units globally. Using the RothC model, trends were evaluated to understand how CC can amplify the effects 

of soils as sink or source of greenhouse gases. Results show that between 31% and 100% of Earth’s regions 

will lose SOC due to CC. The accumulated loss of SOC is between 18 and 500 tC.year/ha depending on crop 

type. For these regions, an assessment was performed of the feasibility of overcoming the loss through 

increased C inputs to soil due to increasing yields. In some regions increased C inputs can potentially 

compensate for increased mineralization, but intensification could require increasing fertilizer use and generate 

new greenhouse gas emissions. 

For grasslands, measured SOC stocks were used to overcome gaps of information on 4 farms in Portugal. 

Using a machine learning method and RothC, results show a root-to-shoot ratio of 3.2 and 2.3 for semi-natural 

and fertilized pastures respectively, a fraction of time spent per livestock unit (LstU) equal to 0.49 and 0.51 

livestock intake of 0.6 tC/LstU. The error of the posterior SOC estimation was approximately 1 tC/ha. This was 

a necessary step towards analyzing the effects of CC on grasslands. 
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1. Introduction 

Soils contain the largest pool of terrestrial carbon 

(Davidson & Janssens, 2006) and, due to its large 

size and residence time, soil organic carbon (SOC) 

can act as a large sink of atmospheric C (Gottschalk 

et al., 2012; Le Quéré et al., 2009; Paustian et al., 

2016) or as a support to several ecosystem 

services. The storage capacity presented by the 

soils is a key function of this terrestrial biome, 

influencing climate regulation and other soil 

functions (Wiesmeier et al., 2019).  

Soil has a dual role as it simultaneously affects and 

is also affected by climate change (CC). Soil organic 

matter (SOM) can be accumulated, or depleted, in 

soils depending on the balance between organic 

inputs into soil (from soil and plants) and organic 

matter mineralization through degradation of 

organic matter mediated by microorganisms. As 

approximately 58% of the organic matter in soils is 

C from biological sources, its accumulation 

produces C sequestration from the atmosphere, 

while its depletion produces C emissions (Pribyl, 

2010).  

CC can affect soils mainly through the increase of 

temperature and increase of moisture. These will 

accelerate decomposition processes of SOC 

mineralization and its posterior loss. A positive land 

carbon–climate feedback emerges with this 

phenomenon due to its potential to accelerate CC 

even more (Crowther et al., 2016) with the increase 

of CO2 release. However, this process can be 

slowed down by increased plant net yield. 

Photosynthetic favoring may occur due to climate 

shifts (J. Smith et al., 2005), leading to more C 

incorporation into the soil. In future terms it can be 

expected that, due to the increase of temperature in 

cooler regions, the net primary production (NPP) will 

increase in those areas. At the same time, the 

SOC’s decomposition will accelerate also due to the 

increase of temperature. The increase or decrease 

SOC stocks will then depend on which process has 

a larger significance: increase in plant inputs to the 

soil or organic matter decomposition (Gottschalk et 
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al., 2012). There is already evidence that crop 

growth and yield have been notably affected by CC 

since the 1980s (Tao et al., 2012). SOC’s response 

to CC is also prone to be different depending on 

specific crop types.  

1.1. Land Use Systems 

The increased challenge in crop production 

associated with the deterioration of soil’s health 

highlights the necessity for quantifying the potential 

of grassland and cropland soils to sequester C. 

Increasing SOC storage, and its associated 

improvements in soil health of agricultural fields, is 

important for maintaining agronomic production and 

environmental benefits emerge, such as soil C 

sequestration and greenhouse gas (GHG) 

mitigation (Ghimire et al., 2019).  

Grasslands with their abundant roots and litter 

significantly affect soil porosity, SOC, and other soil 

properties (Wu et al., 2010, 2016) such as soil 

texture and soil fertility regulation (Wu et al., 2016). 

Ghimire et al. (2019) compared grasslands and 

croplands in the semiarid Southern Great Plains 

and showed that grassland soils accumulated 18% 

more SOC than cropland soils in the 0–80 cm 

profile, whilst at 0–20 cm depth grasslands SOC 

stocks were 37% greater than in croplands. This 

study suggests that light grazing has the potential to 

improve soil health and resilience through an 

increase in SOC and microbial community 

responses related to nutrient cycling. Grasslands 

can be considered as a suitable candidate for crop 

rotation to increase land productivity and promote 

sustainable agricultural management (Cui et al., 

2019). 

1.1.1. Croplands 

To face CC, high expectations have been set for 

exploiting agricultural soils as sinks for atmospheric 

CO2 (Lal et al., 2015; Minasny et al., 2017). Soils 

are able to store significant quantities of C over time 

via photosynthesis (Houghton & Nassikas, 2017; 

Scurlock & Hall, 1998). 

However, natural C stocks are highly sensitive to the 

policy and economic conditions that drive land use 

(LU) and land management decisions (Lambin et 

al., 2001). In the topsoil layer, for example, tillage 

affects the SOC’s profile strongly (Angers & 

Eriksen-Hamel, 2008; Poirier et al., 2009). Under a 

no-tillage approach SOC accumulates closer to the 

soil surface.  

The emissions vary also according to the crop type 

under exploration, reflect the geography of crop-

specific expansion and the characteristics of the 

land (Spawn et al., 2019). For example, the 

cultivation of perennial crops tends to enrich the C 

close to the soil surface in comparison to dominantly 

annual crops, which exhibited a less steep C 

gradient with depth (Heikkinen et al., 2020) 

Both, current and projected world demand, could be 

met through production on existing cropland by 

closing global ‘yield gaps’, reducing waste, 

modifying diets, and revising biofuel policy (Erb et 

al., 2016; Mauser et al., 2015; P. Smith et al., 2013). 

1.1.2. Grasslands 

Grasslands are, today, one of the most endangered 

ecosystems mainly due to land use change (LUC), 

agricultural intensification, and abandonment 

(Pärtel et al., 2015). As this ecosystem plays a 

central role in global food security (Schaub et al., 

2020) the need for its monitoring (Fauvel et al., 

2020) is emergent. This ecosystem covers a major 

share of the world’s agricultural area. In Europe 

natural and semi-natural grasslands cover 22% of 

agricultural land surface (Bengtsson et al., 2019). 

In general, fertilized grasslands tend to have fewer 

herbaceous species than those that are unfertilized 

(Socher et al., 2013). The most important factors 

affecting the yield of grassland communities are 

water and nutrient availability, which influences the 

biodiversity of the community. As plant species 

diversity plays an important role in grasslands 

(Schaub et al., 2020), and the ratio of particular 

functional group biomass depends largely on 

grassland type and local abiotic conditions, it leads 

to differences between countries or even 

subregions (Tóth et al., 2018). This means that the 

results are rarely transferable, as they need to be 

replicated over many sites. To assess the 

conditions of grasslands, ecological surveys are 

required. This implies that the results are highly 

constrained in spatial extent and in temporal 

frequency, limiting grassland monitoring to a local 

scale and usually over a short period of time (Fauvel 

et al., 2020). Although field surveys provide 

valuable and high-quality data at a point scale, they 

cannot easily be upscaled while considering the 

landscape heterogeneity.  

1.2. Objectives 

The goal here is to contribute to a better 

understanding of the potential changes that land 

use, CC and management will produce on global 

SOC stocks.  

SOC is a strong determinant of soil fertility which in 

turn stimulates primary production (Panakoulia et 

al., 2017). As SOC loss is foreseeable, an urgent 



3 
 

environmental problem arises. The magnitude of 

those problems is highly dependent on the 

ecosystem studied. By doing a LU characterization 

(croplands and pastures), it is possible to consider 

how their management can minimize possible 

effects arising from CC. 

Regarding croplands, the objective is to understand 

how CC impacts SOC stocks and yield gaps at a 

global scale, and how C inputs can influence those 

variables. All the required calculations were made 

using the RothC model. Each crop will have its SOC 

content assessed and analyzed. After the results’ 

comparison between scenarios under CC and 

considering climate stabilization with no climate 

change (NCC), yields required to avoid loss of SOC 

were calculated. This step was performed to 

understand the level of C inputs into soil required to 

maintain NCC SOC stocks for each crop for the 87 

years of simulation. If the required yield is lower than 

the potential, then maintaining SOM stocks is 

feasible through an increase in yield. If closing the 

gap is insufficient to maintain SOM, then climate 

change will necessarily generate additional 

emissions. For the regions where the computed 

yield to maintain SOC stocks is still lower than the 

potential, the increase of C inputs can be used to 

minimize those losses but would require fertilization. 

The production and application of the fertilizers 

needed to attain the computed yields under CC was 

evaluated to understand if the CO2eq emissions of 

its production and application is higher than the 

estimated loss of SOC in the CC scenarios 

compared with the NCC scenario. 

The global heterogeneity and lack of detailed data 

for grasslands, prevented the application of the 

same methodology described for croplands. In this 

case, the work involved one region, namely 

Alentejo, in Portugal, and two specific pasture 

systems (fertilized and unfertilized pastures). RothC 

was also used, even though this model was 

developed originally for croplands and not pastures, 

as a tool for evaluating SOC in Portuguese 

pastures. The approach followed was similar to the 

work by Morais et al. (2018) for sown biodiverse 

pastures, using data published by Teixeira et al., 

2011). Using only SOC measured from 4 farms in 

mainland Portugal from 2002, and knowing the 

estimated livestock excretion for beef cattle 

obtained by Morais et al. (2018), a 

reparameterization for those farms was performed. 

Missing data was estimated using a combination of 

machine learning with an inverse approach to 

RothC. Root to shoot (RS) ratio, livestock intake 

(LI), ratio between easily decomposable and 

resistant plant material (DPM/RPM) and the fraction 

of time that the animals spend at each pasture 

system were estimated. Those data were then used 

to calibrate the RothC model enabling the 

estimation of SOC stocks for each of the farms for 

2003 and 2004. A comparison was then made with 

in situ measurements in those same farms and 

years.  

2. Materials and Methods 

2.1. SOC Global Modelling in Croplands Under CC 

2.1.1. Study Area 

The area covered by the analysis was the entire 

world, divided into 17,203 regions. These regions 

were defined as unique homogeneous territorial 

units (UHTU), presented in the following Figure 1, 

which can be seen as the result of the intersection 

of three geographical layers: present LU class, soil 

type and soil texture (Morais et al., 2019). Some 

areas were excluded similarly to what was done by 

Morais et al. (2019), namely arctic and desert 

regions. This happens due to the lack of information 

for the parameters defined and the lack of 

agricultural potential.  

 

Figure 1 – Division of the simulated areas into unique 

homogeneous territory units (UHTUs). 

2.1.2. Croplands Under Analysis 

The analysis considered 63 crop types. When 

applicable, two variants of each crop were 

introduced for irrigation system (rainfed or irrigated) 

and from management decisions (to remove or not 

the residues after the harvesting period). This 

removal is only accounted for cereal cultures which 

are barley, maize, rapeseed, sorghum, and wheat. 

For all other crops, the removal of residues is 

implicit.  

2.1.3. RothC Application 

The model chosen to run all simulations was RothC 

due to its history of prior applications for estimating 

recent and future trends in SOC in cropland soils at 

the local (Liu et al., 2011; Morais et al., 2018), 
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regional (Coleman et al., 1997; Smith et al., 2005; 

Lark et al., 2019), and global scales (Gottschalk et 

al., 2012; Morais et al., 2019). This model also 

enables decision making and land users to assess 

the impact of management practices on SOC 

(Dechow et al., 2019) by iteratively adjusting C 

inputs from plants and animals to soil (Falloon & 

Smith, 2006). This model requires a relatively 

manageable set of inputs regarding land, soil, and 

climate data. The implementation of RothC was 

made using MATLAB vR2017a. Due to the code’s 

extension it will not be presented here explicitly, 

however it will be available by request to the thesis’ 

proponent.  

For the global modelling of SOC for croplands, 

climate data are required. The climate variables 

used were precipitation (mm), mean air temperature 

(ºC) and open pan evaporation (mm). As RothC has 

a monthly step, all these variables were adjusted in 

accordance with the model’s necessities.  

Temperature and precipitation were obtained from 

the International Panel for Climate Change (IPCC) 

(Bruun et al., 2015). The data sets start at 2005 and 

reach the year 2100, offering a time series of 95 

years. The aim of working with scenarios is not to 

predict the future, but to better understand 

uncertainties in order to reach decisions that are 

robust under a wide range of potential future 

possibilities (Ballantyne et al., 2012). Evaporation 

was calculated assuming that it is equal to two thirds 

of potential evapotranspiration (PET). PET was 

calculated using the Thornthwaite formula.  

PET enables the calculation of the water needs for 

each crop. For this variable it was considered the 

single crop coefficient (kc), known for each of the 

crop types (Chapagain & Hoekstra, 2004), which 

was then multiplied by the previously calculated 

PET. Knowing that water needs = PET * kc, if  the 

water needs presented by a certain crop type in 

each region of the world are higher than what nature 

can provide locally through precipitation, then 

irrigation is necessary. Irrigation was then equalized 

to the gap found between water needs and 

precipitation. If precipitation is sufficient to fulfill a 

given crop’s needs, then there is no necessity of 

providing irrigation. 

The soil characteristics also had to be defined. The 

soil depth considered was 30 cm. The percentage 

of clay and initial distribution of SOC between the 5 

existing pools were obtained from Morais et al. 

(2019). It is important to highlight that this initial 

distribution of SOC was established regardless of 

the crop type implemented locally for each region. 

The modelling starts with a simple case of LUC due 

to the lack of sensibility regarding the already 

existent crop type.  

Information about the land it is also important, 

namely the definition of land cover and plant 

residues. Land coverage of each UHTU in each 

month and crop type is used as binary variable (1 – 

crop is present; 0 – crop is absent).  

For each crop, a crop calendar was used to obtain 

the soil coverage period (Chapagain & Hoekstra, 

2004) .  

As the objective is to estimate the gap between 

yields with CC and NCC, it was necessary to 

determine the production yields with the crop’s 

characteristics and residues. Residues calculation 

was made following the method presented by 

Morais et al. (2019) where the IPCC methods 

(IPCC, 1997; IPCC, 2003; IPCC, 2006) were 

applied.  

For croplands, C residues are determined for an 

entire year and then distributed monthly. This 

distribution considered the monthly NPP and the life 

stages of plants. This method was proposed by 

Jebari et al. (2018) and Morais et al. (2018) where 

crops are divided into two categories. In the case of 

cereal crops, 50% out of the total residues occur in 

the harvesting month and the remaining is equally 

distributed for the three months before harvesting. 

Permanent crops see 70% of their residues 

allocated to the pruning months and the remaining 

distributed to the four months before. The months 

for harvesting and pruning were obtained from 

Chapagain et al. (2004). 

NCC and CC results were calculated 

simultaneously. The intention was to know what 

yield would be necessary to maintain the NCC SOC 

stocks for a given crop type in a specific region of 

the world under CC. This required the addition of 

another step in the simulation. To do these 

calculations, the function fmincon was used, 

provided by MATLAB. This function finds the 

minimum of constrained nonlinear multivariable 

function using an 'interior-point' algorithm. The 

establishment of a stop condition is then necessary, 

and it was set to 10-6. 

The approach checked what would be the yield 

required under CC to maintain the total 

accumulated SOC in the case of climate 

stabilization for each crop type and UHTU 

throughout the 87 years of simulation. This 

approach required that  

 
∫ SOCNCC

2100

2013
≈∫ SOCCC

2100

2013
, (1) 

which in practice performed a search for the yield 

that, under the new climate conditions, would make 
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the area under the curve of SOC, i.e. the integral, 

equal in NCC and CC scenarios. 

2.1.4. Comparison Between Yields 

The potential yield for the crop types analyzed 

(IISA/FAO, 2012) was converted into dry matter 

(DM). To compare the required yield to avoid SOC 

loss due to CC with the potential yield, an 

adjustment was necessary. 

Comparing yields allows to determine in which 

UHTUs is possible to compensate the effect of CC, 

and the UHTUs where this is not possible. Yield 

gaps are henceforth designated as ∆yield and were 

calculated by subtracting the potential and the 

calculated yields. This means that every time that 

∆yield is negative the crop yield needs to increase 

above the potential to generate sufficient C inputs 

and maintain total SOC stocks over the period 

analyzed, in which cases it is impossible to avoid 

losing SOC. When ∆yield is positive, there is a 

feasible (lower than potential) increased yield for 

that crop that ensures sufficient C inputs into soil to 

maintain the SOC stocks under CC. 

2.1.5. Increasing Yields Through Fertilization 

For the crop types that have a potential yield higher 

than the required yield to preserve SOC stocks, the 

impact of the production and application of 

additional fertilizers needed was considered 

(assuming fertilizers were of mineral origin). These 

emissions were then compared with the ones 

avoided due to the stabilization of SOC. This 

required the conversion of the calculated CC and 

potential yields, per region and crop type, into N-

yields. The parameters used for this conversion 

were gathered from Lassaletta et al. (2014). 

With the N content for the CC and potential yields it 

was possible to apply the following fertilization 

response curve. The emissions were calculated 

using this amount of N required knowing the amount 

of emissions generated for its application, as well as 

the emissions made for its production. The 

emissions’ factor for fertilizer production used was 

6.2 kg CO2e/kg N (FAO, 2017). The application 

factor depends on the country where the fertilizer is 

being applied (FAO, 2017). Some adaptations for 

the utilization of these factors were required due to 

a discrepancy of the division of world regions from 

FAO and Morais et al. (2019).  

If the increase in yield required to maintain SOC 

stocks was lower than the potential yield, the 

difference between the integral of SOC, under NCC 

and CC, was considered. The loss, or gain, of SOC 

was also converted into CO2eq emissions, using a 

mass balance and the molar mass (i.e. using the 

factor 44/12). These results were compared with the 

emissions originated from the production and 

application of the fertilizers.  

If emissions are higher with fertilization than without, 

then the yield increase would mean a positive 

feedback to CC (i.e. a backfiring rebound), because 

the emissions’ balance is higher with the fertilizers 

than with SOC loss. If the emissions are lower than 

what was previously computed with the SOC loss, 

then increasing yields with fertilizers is a feasible 

strategy to mitigate CC.  

2.2. RothC Calibration for Portuguese Semi-

Natural Pastures 

2.2.1. Study Area 

Figure 2 shows the location of the 4 farms 

considered in this work. Most of the farms under 

analysis, regarding semi-natural pastures, are in 

Alentejo’s region (3 out of the 4 farms) and other 

one is located near Covilhã. 

 

Figure 2 – Spatial localization on Mainland Portugal for 

the 4 farms under analysis. 

The data used to run the model was acquired from 

four different farms for the years 2002, 2003 and 

2004. The farms were divided into two main pasture 

types: fertilized and unfertilized. For both pasture 

types, the data acquired included SOM content (%), 

which was then converted into SOC content. 

The soil covered period is also a required variable 

and was considered binary. Between the months 
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September and June, the value attributed was 1, 

and, for the rest of the simulation year 0 was 

assigned. This is the typical agronomic practice: to 

fully graze the pasture before summer, meaning 

that the soil is not covered. Regarding monthly 

irrigation, the fields were rainfed, not needing the 

provision of external irrigation. Monthly input of plant 

residues and manure farmyard (t C/ha) are also 

required. Manure was not applied in these 

experimental farms. Carbon inputs were introduced 

from two sources, from plants and animals using 

Iplant(t C ha⁄ ) = [(1 - LI) + RS] ∗ AGP ∗ CF, 

and 
(2) 

Ianimal(t C ha⁄ ) = LD ∗ SR ∗ fraction of time. (3) 

The variables in Equations (2) and (3) for the 

calculation of carbon inputs are root to shoot ratio 

(RS), proportional livestock intake (LI) (which is 

presented as kg of dry matter (DM) eaten dividing 

per kg of DM pasture yield), livestock dung excreted 

(LD) (presented as tons of C per livestock unit 

(LstU)), aboveground productivity (AGP) (presented 

has kg of dry matter per hectare), stocking rate (SR) 

(presented has LstU per hectare), carbon fraction of 

legumes and grasses (CF) (which was equal to 0.4 

t C/t DM (IPCC, 2006)) and the fraction of time that 

a LstU spends at the pasture. The time that LstU 

spends at fertilized pastures is represented by the 

subtraction of 1 and the time spent on the 

unfertilized pastures. 

More variables were needed for the initialization of 

the simulation, in this case the monthly air 

temperature and precipitation. These came from the 

“Global Precipitation Climatology Project (GPCP)” 

(Pendergrass et al., 2020) and the Land Processes 

Distributed Active Archive Center (LP DAAC) 

project (Wan et al., 2015). As for the croplands 

approach, the monthly open pan evaporation was 

assumed to be two thirds of the potential 

evaporation, which was calculated using the 

Thornthwaite model. 

2.2.2. Optimization Procedure 

The optimization procedure used allowed the 

computation of the data that was not collected on 

site, through field measurements, but would be 

required to run simulations using RothC. As 

explained by Morais et al. (2018), to obtain this 

information indirect ways were used. The 

parameters that required this type of calculation 

were the RS (which is necessary for estimating 

belowground productivity (BGP) as a function of 

AGP), the time that each of the LstU spent at the 

respective pasture, LI (kg DM/ kg DM) and the 

DPM/RPM ratio. To calibrate the model, the 

parameters were determined once (using data 

collected for the year 2002) and applied for all farms 

and production years. 

The first step was to establish a plausible domain of 

variation for each of the parameters. Afterwards a 

value for the parameter was selected randomly 

within that domain to initialize the optimization 

procedure. The initial SOC considered for each farm 

was collected on the year 2002, whereas the 

remaining SOC information was used for 

comparison. RothC was used to run and to calculate 

the SOC associated to each of those sets of 

numbers. 100 iterations were made and the 

difference between the computed SOC 

(SOCestimated) and the real one (SOCmeasured) was 

determined. This difference was subjected to the 

stop condition 

minimize∑ (
SOCmeasured,i - SOCestimated,i

SOCmeasured,i
)

2
n
i=1 + 

∑ (
SOCmeasured,i - SOCestimated,i

SOCmeasured,i
)n

i=1 , 
(4) 

where n represents the total number of data points 

simulated, that is, the number of production years, 

farms, and grassland types. This equation indicates 

that the algorithm is searching for the minimization 

of the difference between both variables in relative 

terms. If that condition was not reached, then the 

cycle would restart. 

For this non-linear problem the same function used 

on croplands, “fmincon”, was used.  

When the stop condition was met, it was possible to 

confirm that the “best” set of values was found. With 

that information, SOC was estimated for the years 

2003 and 2004 for the exact same farms. This was 

made using RothC again to allow the comparison 

between the data collected on the field for both 

pastures with the calculated SOC amount predicted 

by the model.  

3. Results and Discussion 

3.1. SOC Global Modelling in Croplands Under CC 

3.1.1. Data Analysis 

For the RCP 4.5 CC scenario, if a global average is 

calculated using all simulation years, average yearly 

temperature increases from 17 ºC up to 19 ºC. The 

average maximum annual temperature  is 33 ºC and 

the minimum -12 ºC under RCP 4.5. In the IPCC 

RCP 8.5 climate scenario the increase of 

temperature is higher. For this scenario, global 

average annual temperature increases from 17 ºC 
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to 21 ºC. The average maximum is 35 ºC and the 

minimum -9 ºC. If a constant increment is calculated 

over the simulation period, the increase is 0.03 ºC 

per year under RCP 4.5 and, under RCP 8.5, the 

yearly temperature increment is 0.04 ºC per year.  

New climate models predict an intensification of 

heavy precipitation events globally, as well as the 

occurrence of heat extremes, and, therefore, 

regions with stronger or longer-lasting droughts (E. 

M. Fischer & Knutti, 2014). These climate extremes, 

droughts, storms and extreme heat waves, cannot 

be seen as independent phenomena as in many 

regions they are intrinsically connected (Mueller & 

Seneviratne, 2012). Combining high temperatures 

with droughts can initiate a positive regional 

feedback mechanism (E. M. Fischer et al., 2007; 

Hirschi et al., 2011) as extreme drought will often 

reduce evapotranspiration and reduce the cooling 

effect (Peng et al., 2014).  

3.1.2. SOC Global Tendencies  

To assess these differences the global average 

∆SOC per crop type is presented. This variable 

shows the difference between the integral of both 

curves, namely for SOC’s evolution under CC and 

NCC scenarios throughout the 87 years of 

simulation. 

By applying IPCC’s scenario RCP 4.5, global trends 

show that, on average, there is a loss of SOC on 

31% up to 100% of regions of the world depending 

on the crop type. The crop that is less affected, 

meaning that there are less regions with potential 

for its cultivation that lose SOC, is rainfed olives 

(SOC decreases in only 31% of regions). The 

opposite cases, the cases where there is a loss of 

SOC in 100% of the UHTUs, are irrigated coffee, 

sugarcane, cocoa, olives, and apples. In the climate 

scenario where conditions are more hostile (RCP 

8.5), global trends show that the intervals are the 

same (between 31% and 100%) regarding the 

number of regions that suffer from SOC loss. The 

crop that feels minimally the implementation of a 

new CC scenario is still rainfed olives, whereas the 

crops more affected, where 100% of regions where 

they can be cultivated lose SOC, are irrigated 

potatoes, sugarcane, cocoa, olives, and apples.  

It is important to highlight that the variable ∆SOC 

here presented is a global average for all regions 

with potential for the presence of each crop type. No 

matter what the conclusion is for each crop type, it 

does not mean that it is a true statement for all 

regions with potential for implementation of that 

cropland. As the universe of UHTUs under analysis 

is large, and some crop types have different number 

of regions with growth potential, by doing global 

averages in terms of cropland types, some minority 

results can get diluted.  

The global average for SOC loss is different 

between scenarios: 60 out of the 63 crop types 

under analysis have a ∆SOC lower when the 

simulation is done with RCP 8.5 than with the RCP 

4.5 CC scenario, even though the difference 

between scenarios is small. Respectively to RCP 

4.5 and 8.5, the intervals of accumulated SOC’s loss 

are from 18 to 469 t C.year/ha, and from 48 to 515 t 

C.year/ha. These results can be explained by the 

differences in terms of annual global temperature 

and precipitation between the two CC scenarios. 

The difference in 2100 reaches almost 4 ºC and 

around 26 mm, for temperature and precipitation, 

respectively. 

As the world is getting hotter without an equivalent 

increase in moisture, a slight acceleration of the 

decomposition processes for SOC (Building & 

Pasteur, 2005; Crowther et al., 2016) occurs, 

leading to the small difference between scenarios. 

It is important to highlight that there are some crop 

types where all regions can suffer SOC loss. Even 

though the crop types where this happens may vary 

with climate scenario, overall, the crops where this 

phenomenon occurs are predominantly in lower 

latitude regions, mainly regions with a tropical or 

temperate moist climate. As the loss of SOC is 

associated with decomposition processes, which 

can be accelerated by having a combination of 

increasing temperatures and soil moisture, regions 

with lower latitudes see these conditions favored by 

CC (Gottschalk et al., 2012; J. Smith et al., 2005). 

3.1.3. Comparison of Potential and Required 

Yields for SOC Stabilization 

The analysis for the crops yields was conducted 

using the annual value. A comparison was made 

using the values from the baseline scenario and the 

potential yields with the results under CC using 

RCPs. The difference between NCC yields and the 

yield required under CC, and the difference 

between the potential and the CC yield, were 

computed for each UHTU, per crop type and 

throughout the 87 years of simulation.  

The regions where the loss of SOC is avoidable with 

an increase in yield, because the necessary yield is 

still lower than the potential one, are labeled as 

“positive regions”. The number of “positive regions” 

was then divided by the number of regions where 

the crop can potentially be produced. The difference 

between the potential and the required yield to 

maintain SOC stocks is also analyzed (∆yield).  
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It is possible to conclude that there are no large 

differences between the application of both climate 

scenarios, in percentual terms and in terms of 

number of regions. The difference represents, on 

average for the whole globe between the RCP 4.5 

and 8.5 scenarios, a 4% difference in regions where 

the increase in yield will not be enough to 

compensate for the SOC losses. 

For this cropland yield analysis, a global average for 

all crop types was made to enable comparisons 

between CC scenarios. It is possible to see that in 

8% to 89% of regions the NCC SOC stocks, 

depending on the crop type analyzed, can be 

maintained with the RCP 4.5 CC scenario because 

the necessary yield is still lower than the potential 

one. In the RCP 8.5 scenario, and doing the same 

type of assessment, it is observed an interval of 5% 

to 88% of regions with capability to maintain SOC 

stocks due to the possibility of attaining the 

necessary yields to compensate the SOC loss 

depending on the crop type analyzed. The minimum 

(8%  and 5%) and maximum (89% and 88%) values 

correspond to irrigated sugar beet and rainfed 

sorghum with residues removal, respectively. The 

difference between crops can be explained through 

the regions where the crop types are preferably 

settled. 

The difference of yields (between required and 

present NCC yields) increased when the simulation 

passed from RCP 4.5 to 8.5. The minimum 

differences are -51 t/ha and -54 t/ha, and the 

maximum differences are around 1 t/ha, for each 

respective CC scenario. This is corroborated by the 

fact that, for 49 out of 63 crop types, the required 

difference of yields is larger for RCP 8.5, the more 

hostile CC scenario. This evolution can happen due 

to the increase in number of regions where the 

necessary production yield to maintain SOC stocks 

is higher than the soil’s potential.  

The maximum difference found for the cultures 

where it is infeasible to maintain SOC was found for 

irrigated tomatoes (-51 t/ha). For cases where it is 

feasible to maintain SOC, the one with largest 

difference between required and present yields is 

rainfed sorghum with no straw (1 t/ha). Finally, the 

minimum difference can be found for irrigated palm 

oil (0.005 t/ha). For RCP 8.5 results are similar, with 

the wider negative difference found for irrigated 

tomatoes, but with a higher absolute value (54 

t/year), and the wider positive difference can be 

found for rainfed sorghum with no straw, also with 

approximately 1 t/year, while the minimum 

difference is from rainfed palm oil (0.01 t/year).  

Between climate scenarios it is necessary to 

increase NCC yields more for RCP 8.5 (for 55 out of 

the 63 crop types under simulation). On average it 

would be necessary to increase around 27 times the 

yields to reach the ones found required when CC is 

simulated using RCP 4.5, whilst with RCP 8.5 this 

average increases up to around 32 times (ignoring 

for the moment the yield gaps). When the analysis 

passes to the comparison of how far required yields 

for SOC stabilization are from the potential, either 

above or below, the overall results are the same and 

for the same crop types. That is, when the previous 

ratio was higher for RCP 8.5 than for RCP4.5, the 

same happens for the ratio considering the potential 

yield. Hence, the same 55 crops present a bigger 

difference between the potential and the required 

yield when comparing both RCPs. On average, it is 

necessary to increase 3 times the potential yield for 

RCP 4.5, and 4 times when RCP 8.5 is used.  

It is also possible to analyze that when the RCP 4.5 

scenario is used, only 13 crop types present a global 

yield below the potential one. This shows that most 

crop types will not be able to maintain their SOC 

stocks. The number of crop types that present this 

characteristic decreases to 10 when RCP 8.5 is 

used.  

3.1.4. Increasing Yields Through Fertilization  

The regions where the increase of CO2eq emissions 

due to the additional required fertilizer use is lower 

than the loss of CO2 due to SOC’s depletion under 

CC, were labeled has “positive regions” and the 

analysis was conducted per region and per crop 

type. The accumulated balance per region type was 

made subtracting ∆SOC and the sum of all the 

emissions from the N-fertilizers’ application at the 

regional level for the 87 years. For the emissions per 

crop type, a sum of the emissions per regions was 

made. Afterwards, per crop type a regional average 

was made where the sum of the emissions per 

region was divided by the number of regions where 

it was still possible to increase yields (because it is 

still lower than the potential). 

The results show that only 17 for RCP 4.5, and 13 

for RCP 8.5, out of the 63 crop types under analysis 

have a positive emissions’ balance, i.e. it is 

preferable to intensify cropland production to the 

extra production of residues despite the emissions 

from increased fertilizer production and application. 

This means that strategies proposing the closure of 

yield gaps, despite potentially being positive for 

SOC conservation, may backfire due to the 

emissions from fertilizers used to increase yields. It 

is also shown that increasing yields would mean to 

increase CO2eq emissions between 37 t CO2 

eq.year/ha and 21,000 t CO2 eq.year/ha for both 
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RCP’s when the average per region was made, for 

the entire 87 years analyzed according to the crop 

type. This analysis is dependent on crop types and 

it is important to highlight that there are crop types 

that have a positive balance. These crop types 

show that between 32 t CO2 eq.year/ha and 1,525 t 

CO2 eq.year/ha can be avoided through 

intensification. It is interesting to highlight that even 

though RCP 4.5 has more crop types where the 

balance between emissions with fertilizers, and 

without, contributes more towards a negative 

feedback to CC, it is for RCP 8.5 that average 

emissions are lower. This happens because under 

RCP 8.5 there are more regions and crop types 

where the loss of SOC stocks in unavoidable. This 

means that they do not enter this simulation. As the 

difference in yields is not highly significant, by 

having less regions count towards the average, 

under RCP 8.5 the emissions using fertilizers are 

less impactful. 

Optimizing the N-inputs in agroecosystems may be 

an effective strategy for reducing GHG emissions 

and improving C sequestration (Jiang et al., 2019), 

but only in some regions and for some crop types. 

For example comparing the results from the 

cropping of rice in two different provinces of China, 

in one of them the use of N-fertilizers increased the 

C-footprint (Jiang et al., 2019) whilst the other was 

a C-sink (Li et al., 2019). These results strongly 

suggest that the use of intensification strategies 

towards the closure of yield gaps should weigh 

possible rebounds such as the fact that more C may 

be emitted simply from producing fertilizers than 

accepting the loss of SOC, besides other negative 

effects of excessive N input on GHG emissions. 

Management strategies should be reexamined in 

relation to crop production and GHG mitigation. 

3.2. RothC Calibration for Portuguese Semi-

Natural Pastures 

3.2.1. Parameter Analysis 

For RS, the results are approximately 3.2 and 2.3, 

0.49 and 0.51 for time fraction spent per LstU, 0.6 

for LI and 1 for DPM/RPM ratio, respectively for 

unfertilized and fertilized pastures. This set of 

parameters obtained the lowest score, close to 0.2. 

The 100 iterations show a wide range of results, as 

well as a wide range of scores. For the case of the 

RS ratio, the values for this parameter are 

comprised within the interval of 2.6 up to 3.2 for 

unfertilized pastures and around 2.3 and 3 for 

fertilized pastures. Regarding the time that the 

animals spend on each plot, the values range 

around 0.5 for unfertilized pastures and fertilized 

pastures. LI, for unfertilized and fertilized pastures 

respectively, is within the following intervals: from 

around 0.4 to 0.6, and from around 0.5 to 0.6. 

DPM/RPM ratio varies around 1 and 1.03 in the 

unfertilized pastures and fertilized pastures. Scores 

varied around 0.2, being the best score equal to 

0.19. 

The estimated parameters for each pasture type 

show a small dispersion when it comes to score, 

which is a good indicator of the method’s accuracy. 

The existence of outliers can have several reasons. 

One of reasons is the fact that the data set for the 

estimation of parameters is relatively small. This 

can lead the model to make mistakes when 

minimizing the stop condition. If a local minimum is 

found, as the value is lower than the neighbors, it 

will be unable to exit this cycle and this set will be 

considered as one of the final possibilities, even 

though its conditions are far from the absolute 

minimum. Another possible explanation can come 

from the attribution of random numbers to initialize 

the iterations’ loop. This may lead to sets of data 

that are not precise 

When comparing both pastures under analysis, it is 

possible to infer that the RS ratio is more than one 

third higher for unfertilized pastures than in the 

fertilized ones. These pastures between the 

category of “temperate grasslands” (4.224) and the 

“tropical/sub-tropical grassland” (1.887) according 

Mokany et al. (2006). Plants with a higher proportion 

of roots can compete more effectively for soil 

nutrients, while those with a higher proportion of 

shoots can collect more light energy. The fact that 

fertilized pastures had a lower RS can mean that, 

because N was provided, the plant did not need to 

develop their root systems as much to access N 

from the soil. 

LI was the same for both pasture systems, around 

0.6. For this simulation, the same animals were 

grazing in both plots it is then normal that the intake 

is the same. The difference could come from the 

time they choose, or are obliged, to spend in each 

type of pasture.  

The fraction of time that each LstU spent in the 

fertilized fields is slightly higher (0.51) than in the 

unfertilized ones (0.49). This can occur because, as 

mentioned previously, fertilized pastures can have 

reduced levels of weeds and more grass 

production. The animals may then prefer to spend 

most of their time at a field where their needs are 

suppressed more easily due to the higher 

availability of grass per unit area. This can lead also 

to the discrepancy felt on RS ration between 

fertilized and unfertilized pastures. 
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For the DPM/RPM ratio, the value is approximately 

the same for both type of pastures (around 1 for 

both). The explanation for this may come from the 

presence of the same species on both pasture types 

even though the management choices applied to 

the fields are different. The results are close to the 

default for croplands and improved grasslands, 

which is equal to 1.44 (Coleman et al., 2014). 

3.2.2. SOC Results 

When using the highlighted set of parameters, SOC 

was calculated for all farms and pasture types in 

order to get a sense for the estimation errors. The 

results show, considering farm 4 as an exception, 

that all SOC stocks increased from 2003 to 2004. 

Farm 4 was the exception because, even though 

the estimated SOC values are increasing, that trend 

is not followed by the measurements done in situ. 

This decreasing trend can occur due to the higher 

temperatures registered in the south of Portugal. 

This increase in temperature can be responsible for 

the acceleration of the SOC’s decomposition 

processes. This was not foreseen by the model 

because all other farms see its stocks increasing.  

Comparing both pasture types, it is possible to see 

that the SOC results are higher for unfertilized 

pastures than for fertilized ones. Some reasons can 

be pointed such as the fact that the RS ratio is 

higher on natural pastures. Abundant roots and litter 

significantly affect soil porosity, SOC, and other soil 

properties (Wu et al., 2010, 2016). Fine roots 

decompose significantly faster than coarse roots 

(Zhang et al., 2016) leading to the increase in SOM. 

Roots also favor the formation of soil pores, which 

influences soil properties due to change in 

burrowing activity and biomass of earthworms 

(Fischer et al., 2014) resulting in more abundant 

SOC.  

The differences between SOC stocks at different 

farms can be explained by their geographical 

position and their meteorological conditions. The 

management options done by different landowners 

can also influence the results. It is then possible to 

understand why it is so difficult to comprehend and 

explain the grasslands’ behavior. As there are a lot 

of variables to consider, it is still not possible to 

extrapolate results from one farm to the other, or 

even from one year to another, in an exact way. The 

results obtained by simulation, on average, 

correspond to a 1% difference between the 

measured and estimated values which, in absolute 

terms, correspond to -1 t C/ha on average for all 

farms. The discrepancy increases when each farm 

is analyzed yearly. 

 

4. Concluding Remarks 

CC is bound to produce major changes in Earth’s 

ecological cycles and reshape ecosystems. Many of 

the effects of CC have been estimated, and 

important feedbacks considered, such as the loss of 

methane due to permafrost melting. However, the 

effects of CC on SOM have so far only been 

coarsely estimated. SOM is the largest terrestrial 

pool of stable C and therefore even minimal 

quantities of SOC stock depletion can contribute 

with CO2 emissions that are likely to accelerate CC. 

These problems are global because CC does not 

have barriers.  

All in all, whether the systems studied here are C 

sinks or sources is highly dependent on land 

occupation and how that land is managed, but the 

contribution of each factor is certain to change with 

CC. The complex two-way effects between CC and 

land management choices must be more thoroughly 

considered in a rapidly changing world. These 

management choices from tillage to fertilization, 

from LUC to crop choice, should have in mind the 

environmental factors that will be affected because 

the global food security is at stake. For cropland, it 

is no longer acceptable to consider all agricultural 

use types as the same. As different crops will 

behave differently (and SOC will respond 

differently) to CC, for some it may be impossible to 

prevent any climate feedback even with increased 

C inputs to soil due to the blowback effect from 

fertilizer use. For grassland, there are too many 

unknowns as the systems vary with location and 

management. However, the tools for depicting the 

effects of CC in farmland, and vice-versa, are 

available and should be increasingly deployed.  
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